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We examine the impact of the atmospheric turbulence on a recently discovered type of classical entanglement of
partially coherent beams endowed with a twist phase. We derive a compact analytical expression for the Schmidt
number of a bi-orthogonal decomposition of the Wigner function of a twisted Gaussian Schell-model (TGSM)
beam propagating through the turbulent atmosphere. We elucidate conditions for a TGSM source to generate a
strongly classically entangled paraxial field over a desired propagation distance in the turbulent atmosphere. Our
results will find applications to free-space optical communications and motivate further research into classical
entanglement with random light. ©2022Optica PublishingGroup
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1. INTRODUCTION

Virtually any viable free-space optical (FSO) communication
protocol, whether classical or quantum, has to overcome the
deleterious effects of the atmospheric turbulence on the light
propagating from a source to a receiver [1]. In this context, it was
demonstrated not too long ago [2,3] that reducing spatial coher-
ence of the source can help mitigate the effects of turbulence to
some extent. Most of the work in this direction to date, however,
has been focused on employing statistically homogeneous light
sources, such as a Gaussian Schell-model source [4,5]. More
recently, the quest for applications of partially coherent light to
free-space optical (FSO) communications has shifted to explore
nonuniformly correlated optical sources [6–8]. In particular,
it has been demonstrated lately [9] that any member of a cer-
tain class of partially coherent vortex fields with a structured
cross-spectral density in a closed form derived in [10] is able to
maintain both its vortex structure and spatial intensity distribu-
tion of light in the atmosphere under any turbulence conditions.
The separability of the orbital angular momentum (OAM)
of such beams, induced by their vortex structure, from their
spatial distribution in the transverse plane and their robustness
against the atmospheric turbulence, make these beams attractive
candidates for FSO.

At the same time, there has been growing interest in exploring
the application of classical entanglement between the polariza-
tion and spatial degrees of freedom of OAM carrying beams [11]
to free-space classical [12] and quantum [13] communications.
In this connection, a recent discovery of a link between classical
entanglement and a nonlocal twist phase of partially coherent

light [14] may offer new perspectives for FSO by combining
the advantages of partial coherence for turbulence mitigation
and classical entanglement associated with the twist phase. The
twist phase of random light was first examined in connection
with free-space propagation of twisted Gaussian Schell-model
(TGSM) light beams [15]. The TGSM beams have since been
experimentally generated [16,17], shown to arise in nonlinear
media [18,19], employed to study information transfer through
random media [20,21], and to improve optical image resolution
[22,23].

In the context of free-space communications with TGSM
beams, a natural question arises: How does the atmospheric tur-
bulence affect the twist-induced entanglement of such beams? A
related practical issue is concerned with the ability to structure
a TGSM source to minimize the adverse affects of turbulence
on their entanglement over a specified range of propagation
distances. We stress that the TGSM beams can only be attractive
for entanglement-reliant FSO protocols if the twist-induced
entanglement can persist over sufficiently long propagation
distances under any turbulence conditions.

In this work, we examine the effects of the atmospheric turbu-
lence on classical entanglement of a TGSM source. We derive an
expression for the Wigner function of a TGSM beam generated
by the source at any distance from the source and evaluate the
Schmidt number of its bi-orthogonal decomposition into a
set of modes. We establish conditions for a TGSM source to
generate a strongly classically entangled beam over a desired
stretch of the turbulent atmosphere.
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The work is organized as follows. In the next section, we
derive an analytical expression for the Wigner function of the
optical field of a TGSM beam propagating in the turbulent
atmosphere and evaluate the Schmidt number of a decomposi-
tion of the Wigner function into a set of bi-orthogonal modes.
The following section is devoted to numerical evaluation of the
Schmidt number under any turbulence conditions. Finally, we
conclude with a brief summary of our results.

2. THEORETICAL FORMULATION

We start with an expression for the cross-spectral density
W(r1, r2, z) [5,24,25] of any paraxial optical field having
propagated over a distance z in the turbulent atmosphere. The
cross-spectral density of the field at a pair of points r1 and r2 in a
plane transverse to the field propagation direction can be written
in terms of the cross-spectral density W0(r1, r2) at the source
as [1]

W(r1, r2, z)=
(

k0

2πz

)2 ∫
dr′1

∫
dr′2W0(r′1, r′2)

× e ik0

(
r2−r′2

)2
/2ze−ik0

(
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)2
/2z
0m
(
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)
, (1)

where k0 = 2π/λ0 is a carrier wavenumber and a structure
function0m describes two point correlations of a random phase
introduced into each statistical realization of the optical field
by the medium turbulence. In a statistically homogeneous and
isotropic turbulence, 0m can be approximated by a Gaussian of
the form [1,26]

0m(|r1 − r2|, z)= exp

[
−
|r1 − r2|

2

2σ 2
m(z)

]
, (2)

where a characteristic correlation width σm(z) of the turbulence
induced fluctuation reads

σ 2
m(z)=

3

2π2k2
0 z
∫
∞

0 dκκ3Sn(κ)
. (3)

Although such a quadratic approximation for the structure
function is not without pitfalls [27], it is expected to work well
for low-coherence input sources for which the contributions to
the tails of the integrand on the right-hand side of Eq. (1) are
effectively cut off by short-range correlations at the source. This
is precisely the type of source that is of interest in connection
with the twist phase-induced classical entanglement [14].

We assume the spectrum Sn(x ) of the refractive index fluc-
tuations entering the right-hand side of Eq. (3) to obey the
Kolmogorov scaling with the von Kármán cutoff such that

Sn(κ)= 0.033C 2
n

exp(−κ2/κ2
>)

(κ2 + κ2
<)

11/6 , (4)

where C 2
n is a so-called structure constant of the index fluctua-

tions and κ> = 5.92/L0 and κ< = 2π/l0, with l0 and L0 being
the inner and outer scales of the turbulence, respectively [1].

Let us now specialize to a twisted Gaussian Schell-model
source whose cross-spectral density at a pair of points r1 and r2 in
the source plane is given by [15]

W0(r1, r2)∝ exp

(
−

r2
1 + r2

2

4σ 2
I

)
exp

[
−
(r1 − r2)

2

2σ 2
c

]
e iu(r1×r2)⊥ ,

(5)
where (r1 × r2)⊥ = x1 y2 − x2 y1 is a cross product of 2D vec-
tors in the transverse plane of the source. Further, we introduced
an rms width σI of the source intensity, source transverse coher-
ence width σc , and a twist parameter u. Hereafter, we drop any
immaterial constant factor.

To examine the evolution of classical entanglement of a
TGSM beam in the turbulent atmosphere, we follow our
recently introduced approach [14] by evaluating the Wigner
function of the optical field of the beam. The Wigner function is
defined by the expression

W(k,R)=
∫

drW(R− r/2,R+ r/2)e−ik·r, (6)

where

R= (r1 + r2)/2, r= r2 − r1 (7)

are the radius vectors of the “center-of-mass” and position dif-
ference of any two points r1 and r2 in the transverse plane of the
beam. On substituting from Eq. (1) into (6) and using Eq. (2)
through (4) we obtain, after a somewhat lengthy albeit straight-
forward calculation, the expression for the Wigner function of a
TGSM beam as

W(k,R)= σ 2
eff(z)W+[ky , X (z)]W−[kx , Y (z)]. (8)

Here
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and
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, (10)

where we introduced the notations

X (z)= X − zkx/k0, Y (z)= Y − zky/k0, (11)

as well as

1

σ 2
eff(z)

=
1

4σ 2
I

+
1

σ 2
c
+

1

σ 2
m(z)

. (12)

At this point, let us briefly interpret the Wigner function
evolution of a TGSM beam in the turbulent medium. We can
infer from Eqs. (9) and (10) that in the absence of the twist
phase, u = 0, the overall Wigner function can be rearranged into
a product of two factors, each depending only on one of the two
mutually orthogonal components of k and R. Thus, the Wigner
function is separable in Cartesian coordinates. Further, the
evolution of the Wigner function distribution in physical space
amounts to a shear: each coordinate is translated on propagation
at a rate dependent on the corresponding component of the
wave vector according to Eq. (11). At the same time, the Wigner
distribution narrows in the k-space, indicating coherence loss
(decorrelation) caused by the medium fluctuations.
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As the twist phase is imparted on the source, however, W
becomes classically entangled with respect to pairs of variables,
(X (z), ky ) and (Y (z), kx ), resulting in rather complicated
dynamics. To quantify classical entanglement, we observe that
the Wigner functions in Eqs. (9) and (10) have exactly the same
functional form as those of a TGSM source derived in [14] if one
replaces X and Y with X (z) and Y (z), respectively, as well as σc

with an effective propagation dependent coherence lengthσ∗(z)
defined as

1

σ 2
∗
(z)
=

1

σ 2
c
+

1

σ 2
m(z)

. (13)

Next, we can introduce effective twist and coherence parame-
ters by the expressions

teff(z)= uσ 2
∗
(z), ξeff(z)= σ∗(z)/σI . (14)

We can then follow the approach of Ref. [14] step by step and
define a Schmidt number of a bi-orthogonal decomposition of
the TGSM beam Wigner function in terms of the squares of the
corresponding eigenvalues, νn = λ

2
n± as

K =
(
∑
∞

n=0 νn)
2∑

∞

n=0 ν
2
n

. (15)

We note in passing that thereby defined Schmidt number is
a classical analog of a degree of correlation of a biparticle entan-
gled quantum wave function that was originally introduced in
[28] motivated by probabilistic considerations.

Further, following exactly the same line of reasoning as in Ref.
[14], we can read off an expression for the Schmidt number at
any distance z within the turbulent medium as

K (z)=
1+ 2t2

eff/ξ
2
eff + ξ

2
eff/4

1+ ξ 2
eff/4

. (16)

Next, on substituting from Eq. (14) into Eq. (16) and utiliz-
ing Eq. (13), we obtain, after simple algebra, the explicit expres-
sion for the Schmidt number in the form

K (z)=
1+ 2t2/ξ 2

c + ξ
2
c /4+ σ

2
c /σ

2
m(z)

1+ ξ 2
c /4+ σ 2

c /σ
2
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, (17)

where t = uσ 2
c and ξc = σc/σI are dimensionless twist and

coherence parameters of a TGSM source.

3. NUMERICAL RESULTS

At this stage, we interpret the just-derived expression for the
Schmidt number. We can infer at once from Eq. (17) that (i) the
second term in the numerator gives rise to strong entanglement
of a nearly incoherent TGSM source, and (ii) the twist-induced
entanglement is completely lost over long enough propagation
distances over which the last term in the numerator and denomi-
nator dwarfs the rest, resulting in K asymptotically approaching
unity. Thus, we can establish conditions for a TGSM source
to generate strongly classically entangled beams over a given
propagation distance L in the turbulent atmosphere. First, we
stipulate that the source have low coherence, ξc � 1. Next, tak-
ing t = 1, we must ensure that the twist-induced entanglement

Fig. 1. σ 2
c /σ

2
m as function of the propagation distance z (km) in a

log-log scale for two TGSM sources with coherence widths: σc = 1 cm
(dashed red line) and σc = 10 cm (solid blue line). The structure con-
stant of refractive index fluctuations is taken to be C 2

n = 10−13 m−2/3,
corresponding to the strong fluctuation regime.

generation dominates the turbulence-induced entanglement
loss, at least, over the distance L so that

σc � (σ 2
I L3

T/L)1/4, (18)

where we introduced a length LT associated with turbulence
effects by the expression

LT =

[
2π2k2

0

3

∫
∞

0
dκκ3Sn(κ)

]−1/3

. (19)

Equations (17) and (18) are the key results of this work, as
they make it possible to quantify the measure of twist-induced
classical entanglement in FSO communications and indicate
how to tailor a TGSM source to mitigate turbulence-induced
entanglement degradation.

Under typical atmospheric conditions, the structure con-
stant falls into the range: 10−17

≤C 2
n ≤ 10−13 m−2/3, with the

lower bound corresponding to weak and the upper to strong
fluctuation conditions. The turbulence length LT is then
in the range from around 60 cm in the strongly fluctuating
regime to roughly 13 m in the weakly fluctuating one at the
carrier wavelength λ0 = 0.5 µm. To illustrate the effect of
turbulence in the worst case scenario, we exhibit in Fig. 1 the
ratio σ 2

c /σ
2
m as a function of the propagation distance in the

atmosphere in the log-log scale. We assume strong fluctuations
(C 2

n = 10−13 m−2/3) and display two cases: σc = 1 cm (dashed
line) and σc = 10 cm (solid line). We can infer from the figure
that even if the source remains nearly incoherent, σc � σI ,
turbulence effects can come into play over moderate propaga-
tion distances. For instance, for a nearly incoherent source with
σc = 10 cm and λ0 = 0.5 µm, such that a characteristic diffrac-
tion length of the beam generated by the source is of the order of
k0σ

2
c ∼ 100 km, turbulence effects become quite appreciable

over a 10 km range.
Next, we examine the evolution of the Schmidt number of

the Wigner function decomposition of a paraxial TGSM field
into a bi-orthogonal set of modes in the turbulent atmosphere.
In Fig. 2, we display K as function of z in the log-log scale for
two sources: a nearly incoherent source with σc = 1 cm and
σI = 10 cm (solid curve) and a rather incoherent one with the
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Fig. 2. Schmidt number K as function of the propagation distance
z (km) in the log-log scale for two TGSM sources: σI = 10 cm and
σc = 1 cm (solid blue curve) as well as σI = 3 cm and σc = 10 cm
(dashed red curve). The structure constant of refractive index fluctu-
ations is taken to be C 2

n = 10−13 m−2/3, corresponding to the strong
fluctuation regime.

same coherence width and σI = 3 cm (dashed curve). We focus
on the case of strong atmospheric fluctuations corresponding
to C 2

n = 10−13 m−2/3. We can conclude from the figure that
entanglement remains nearly unaffected by the turbulence over
the propagation distance of around 1 km and degrades precipi-
tously afterward. We note that in both cases, the diffraction
length is of the same order, k0σ

2
c ∼ 1 km. We further note that

our numerical results are consistent with Eq. (18), which limits
the source coherence length to much less than 10 cm to ensure
little entanglement degradation over a distance under 1 km.

Finally the strength of atmospheric fluctuations significantly
affects the rate of entanglement loss, as is evidenced by Fig. 3,
where we plotted K versus z in the log-log scale for a nearly
incoherent source with σc = 1 cm and σI = 10 cm under mod-
erate (C 2

n = 5× 10−15 m−2/3) and strong (C 2
n = 10−13 m−2/3)

fluctuation conditions. The two cases correspond to solid
and dashed curves, respectively. We observe in Fig. 3 that the
twist-induced entanglement of the source is almost completely
lost toward the end of a 30 km stretch of a strongly fluctuating
atmosphere, while a substantial amount of entanglement is still
maintained over the same interval under moderate fluctuation
conditions.

4. SUMMARY

In summary, we have explored how the degree of classical entan-
glement of random light beams endowed with a twist phase is
affected by beam propagation through turbulence. We have
derived an elegant analytical expression for the Schmidt number
of the bi-orthogonal decomposition of the Wigner function
of a TGSM beam into a set of modes and traced the Schmidt
number evolution as the beam propagates through the turbulent
atmosphere. We have also established the condition for the
coherence width of the source generating such a beam to ensure
robust entanglement of the beam over a desired propagation dis-
tance in the atmosphere under any turbulence conditions. We
anticipate our results to be instrumental in facilitating classical
and quantum information processing through the turbulent

Fig. 3. Schmidt number K as function of the propagation distance
z (km) in the log-log scale for a TGSM source with σI = 10 cm and
σc = 1 cm for two atmospheric fluctuation regimes: C 2

n = 10−13 m−2/3

(dashed red curve) and C 2
n = 5× 10−15 m−2/3 (solid blue curve).

atmosphere and in informing further studies into classical
entanglement with random light.
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